If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4v^2+8v-3=0
a = 4; b = 8; c = -3;
Δ = b2-4ac
Δ = 82-4·4·(-3)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{7}}{2*4}=\frac{-8-4\sqrt{7}}{8} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{7}}{2*4}=\frac{-8+4\sqrt{7}}{8} $
| 21x-4=90 | | (x^2-7x+12)=(4x-5) | | 3x-x+2x=10-3+5 | | 2x-x+4=2 | | d+10/11=-15 | | 3/8n-20=-7 | | 4(p+6)=12 | | 2/3+k=9 | | x/4=8/17 | | -18-4x+2x=9 | | X=4y+19 | | 0=t^2-7t+49/4 | | p=1-(.4) | | 30x+75=180 | | 4+z=-6-5z-2 | | 4x-21=75 | | x^2−2x+10=0 | | 5x^2+1=2x+13 | | 2x+21=6x+10 | | x/3-8=-9 | | -59-7p=-8(2p-2)+-6p | | 14+4y=16 | | 9k^2+12k-23=0 | | 9k^2+12k−23=0 | | 5-2p=6 | | 30x=42x | | -0.04x-35=0 | | 5/3=5k | | 12/3=5k | | 16^{6x}=16^{x+3} | | -9-7(3p-5)=93-4 | | 3x^2+1=25 |